	Pro	e-Calculus Practice '	Test 2.4-2.5	Assg.#
Name	:	Dat		Per:
NO GRAPHING CALCULATORS ALLOWED. SHOW ALL THE WORK.				
I. Use <u>long division</u>	on to find the quot	ient of:		
1) $(x^3 - 2x^2 - 5x + 6) \div (x - 3)$ 2) $(x^4 - 81) \div (x + 5)$ 3) $(18x^4 + 9x^3 + 3x^2) \div (3x^2 + 1)$			1)	
II. Use <u>synthetic d</u>	<u>livision</u> to find the	3)		
4) $(3x^2 + 7x - 20) \div (x + 5)$ 5) $(6x^5 - 2x^3 + 4x^2 - 3x + 1) \div (x - 2)$ 6) $(x^7 + x^5 - 10x^3 + 12) \div (x + 2)$			4)	
III. Use the <u>Remainder Theorem</u> to find the remainder:			5)	
7) $(x^3 - 7x^2 + 5x - 6) \div (x - 3)$ 8) $(x^4 - 5x^3 + 5x^2 + 5x - 6) \div (x + 2)$			6)	
IV. Use the Remainder Theorem & Factor Theorem to determine			mine ⁷⁾	
9) If $(x - 3)$ is a factor of $3x^3 - 2x^2 - 5x + 1$ 10) If $(x + 2)$ is a factor of $5x^3 + 10x^2 - 5x + 10$			8)	
V. <u>Solve</u> the polynomial functions:			9)	
11) $f(x) = 2x^3 - 5x^2 + x + 2$ 12) $f(x) = 12x^3 + 16x^2 - 5x - 3$ 13) $f(x) = x^4 - 6x^2 - 8x + 24$ 14) $f(x) = x^4 - 2x^3 + x^2 + 12x + 8$			10)	
15) Fill in the table with all the possible combinations for the zeros for the following polynomial function: $f(x) = 2x^5 - 3x^3 - 5x^2 + 3x - 1$			12) 13)	
Possible Positive Real Zeros	Possible Negative Real Zeros	Possible Imaginary Zeros	14)	
			16)	
			17) a)	b)
16) Solve the follo	wing polynomial fu	zero: c)	d)	
$f(x) = 2x^3 + x^2$	-13x + 6	e)	f)	
			<u>g</u>)	h)
			18)	
			19)	

17) $f(x) = 2x^3 + x^2 - 13x + 6$

- a) According to the Fundamental Theorem of Algebra, determine the number of complex zeros.
- b) At most how many turns in the graph?
- c) According to Descartes' Rule of Signs, determine the number of possible positive real zeros.
- d) According to Descartes' Rule of Signs, determine the number of possible negative real zeros.
- e) According to the Rational Zero Theorem, list all the possible rational zeros.
- f) Factor completely.
- g) Determine all the zeros.

x-axes by 1 y- axes by 2

- h) Determine the y-intercept.
- i) Sketch the graph. Graph all the zeros, y-intercept (if any), and critical points (approximate as needed).
- 18) Find a 3^{rd} degree polynomial function f(x) with real coefficients that has 2, and 2-3i as zeros, such that f(1) = -10. Write the answer as a function in descending order.
- 19) Find a 4th degree polynomial function f(x) with real coefficients, i is a zero and -3 is a zero of multiplicity 2, such that f(-1) = 16. Write the answer as a function in descending order.