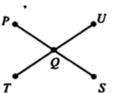
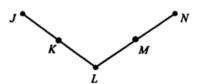

## [2.5] SEGMENTS PROOFS HW---KEY


## SEGMENTS PROOFS

Directions: Complete the proofs below by giving the missing statements and reasons.

| 0 | <b>Given:</b> <i>E</i> is the midpoint of $\overline{DF}$<br><b>Prove:</b> $2DE = DF$                                                                | D E F                         |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|   | Statements                                                                                                                                           | Reasons                       |
|   | <b>1.</b> <i>E</i> is the midpoint of $\overline{DF}$                                                                                                | 1. Given                      |
|   | <b>2.</b> $DE = EF$                                                                                                                                  | 2 Det of Midpoint             |
|   | <b>3.</b> $DE + DE = DE + EF$                                                                                                                        | 3. Addition Property          |
|   | <b>4.</b> $2DE = DE + EF$                                                                                                                            | 4. SIMplify                   |
|   | <b>5.</b> $DE + EF = DF$                                                                                                                             | 5. Spament Addition Postulate |
|   | $6. \ 2DE = DF$                                                                                                                                      | 6. Transitive property        |
| 0 | <b>Given:</b> $\overline{KL} \cong \overline{LN}$ , $\overline{LM} \cong \overline{LN}$<br><b>Prove:</b> <i>L</i> is the midpoint of $\overline{KM}$ |                               |


| Statements                                                                          | Reasons                |
|-------------------------------------------------------------------------------------|------------------------|
| <b>1.</b> $\overline{KL} \cong \overline{LN}$ , $\overline{LM} \cong \overline{LN}$ | 1. Given               |
| <b>2.</b> $KL = LN, LM = LN$                                                        | 2. Det of Congnuence   |
| 3. KL = LM                                                                          | 3. Transitive Property |
| <b>4.</b> <i>L</i> is the midpoint of $\overline{KM}$                               | 4. Def of Midpoint     |

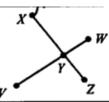




| Statements                                                                          | Reasons                   |
|-------------------------------------------------------------------------------------|---------------------------|
| <b>1.</b> $\overline{PQ} \cong \overline{TQ}$ , $\overline{UQ} \cong \overline{QS}$ | 1. Given                  |
| <b>2.</b> $PQ = TQ$ , $UQ = QS$                                                     | 2 Det of congruence       |
| <b>3.</b> $PQ + QS = PS; TQ + QU = TU$                                              | 3. See Addition Postulate |
| 4. TQ + QS = PS                                                                     | 4. Substitution (PQ =TQ)  |
| <b>5.</b> $TQ + QS = TU$                                                            | 5. Substitution (Qu=QS)   |
| 6. PS = TU                                                                          | 6. Transitive Property    |
| <b>7.</b> $\overline{PS} \cong \overline{TU}$                                       | 7. Def of Congruence      |

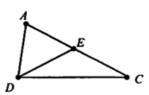
**Given:** *K* is the midpoint of  $\overline{JL}$ , *M* is the midpoint of  $\overline{LN}$ , JK = MN**Prove:**  $\overline{KL} \cong \overline{LM}$ 




| Statements                                                                                             | Reasons                                   |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------|
| <b>1.</b> <i>K</i> is the midpoint of $\overline{JL}$ ,<br><i>M</i> is the midpoint of $\overline{LN}$ | 1. Given                                  |
| <b>2.</b> $JK = KL, LM = MN$                                                                           | 2 Def of Midpoint                         |
| 3. JK = MN                                                                                             | 3. Given                                  |
| 4. MN = KL, LM = MN                                                                                    | 4. Substitution (JK=MN)                   |
| 5. LM = KL                                                                                             | 5. Transitive property                    |
| <b>6.</b> <i>KL</i> = <i>LM</i>                                                                        | 6. Symmetric Property                     |
| <b>7.</b> $\overline{KL} \cong \overline{LM}$                                                          | 7. Det of Congritence                     |
| Given: $\overline{XY} \cong \overline{UV}$ , $\overline{YZ} \cong \overline{TU}$                       | $\frac{y}{x}$ $\frac{y}{y}$ $\frac{z}{z}$ |

**5** Given:  $\overline{XY} \cong \overline{UV}$ ,  $\overline{YZ} \cong \overline{TU}$ Prove:  $\overline{XZ} \cong \overline{TV}$ 

| ~ |   | 1 | 2 |
|---|---|---|---|
| • |   |   | • |
| Т | U |   | V |


| Statements                                                                          | Reasons                        |
|-------------------------------------------------------------------------------------|--------------------------------|
| <b>1.</b> $\overline{XY} \cong \overline{UV}$ , $\overline{YZ} \cong \overline{TU}$ | 1. Given                       |
| <b>2.</b> $XY = UV$ , $YZ = TU$                                                     | 2. Det of Conquience           |
| <b>3.</b> $XY + YZ = XZ$ , $TU + UV = TV$                                           | 3. Seg Addition Postulate      |
| 4. UV + YZ = XZ, YZ + UV = TV                                                       | 4. Substitution (XY=UV, TU=YZ) |
| <b>5.</b> $XZ = TV$                                                                 | 5. Transitive Property         |
| <b>6.</b> $\overline{XZ} \cong \overline{TV}$                                       | 6. Det of Congritence          |

6 Given:  $\overline{YW} \cong \overline{YZ}$ ,  $\overline{XY} \cong \overline{VY}$ Prove:  $\overline{XZ} \cong \overline{VW}$ 



| Statements                                                                          | Reasons                        |
|-------------------------------------------------------------------------------------|--------------------------------|
| <b>1.</b> $\overline{WY} \cong \overline{YZ}$ , $\overline{XY} \cong \overline{VY}$ | 1. Given                       |
| 2. WY = YZ, XY = VY                                                                 | 2. Det of congnience           |
| 3. XY + YZ = XZ                                                                     | 3. Seg. Addition postulate     |
| 4. VY + YW = XZ                                                                     | 4. Substitution (Xy=vy, yz=yw) |
| 5. VY + YW = VW                                                                     | 5. Seq. Addition Postulate     |
| 6. XZ = VW                                                                          | 6. Trainsitive Property        |
| <b>7.</b> $\overline{XZ} \cong \overline{VW}$                                       | 7. Det of Congnience           |

**Given:** *E* is the midpoint of  $\overline{AC}$ , DE = EC**Prove:**  $\overline{DE} \cong \overline{AE}$ 



| Statements                                            | Reasons                     |
|-------------------------------------------------------|-----------------------------|
| <b>1.</b> <i>E</i> is the midpoint of $\overline{AC}$ | 1. Given                    |
| 2. AE = EC                                            | 2. Definition of Midpoint   |
| 3. DE = EC                                            | 3. Given                    |
| 4. AE = DE                                            | 4. Transitive Property      |
| 5. AT 2 DE                                            | 5. Definition of Congruence |
| <b>6.</b> $\overline{DE} \cong \overline{AE}$         | 6. Symmetric Property       |

**Given:** 
$$RS = \frac{1}{2}RT$$

s Т R

**Prove:** S is the midpoint of  $\overline{RT}$ 

| Statements                | Reasons                       |
|---------------------------|-------------------------------|
| $1.  RS = \frac{1}{2}RT$  | 1. Given                      |
| <b>2.</b> $2RS = RT$      | 2. Multiplication Property    |
| 3. RS + ST = RT           | 3. Segment Addition Postulate |
| <b>4.</b> $2RS = RS + ST$ | 4. Substitution (RS=RS+ST)    |
| <b>5.</b> $RS = ST$       | 5. Subtraction Property       |
| 6. Sisthe midplof RT      | 6. Definition of Midpoint     |

**9 Given:** *M* is the midpoint of  $\overline{LN}$ , *N* is the midpoint of  $\overline{MO}$ **Prove:**  $\overline{LM} \cong \overline{NO}$ 

м Ň õ L

| Statements                                            | Reasons                            |
|-------------------------------------------------------|------------------------------------|
| <b>1.</b> <i>M</i> is the midpoint of $\overline{LN}$ | 1. Given                           |
| 2. LM = MN                                            | 2. Definition of Midpoint          |
| 3. N is the midet of MO                               | 3. Given                           |
| <b>4.</b> <i>MN</i> = <i>NO</i>                       | 4. Def of Midpoint                 |
| 5. LM = NO                                            | 5. Transitive Property of Equality |
| 6. LM ~ NO                                            | 6. Definition of Congruence        |



8