ANGLES AND RADIAN MEASURE – SECTION 4.1

()

1) Definition of an angle: () (An angle is formed by _____ with a common ____

Drawing:

2) Definition of an Angle in Standard Position (SP):

- An angle is in standard position if:
 - Its vertex is at _____
 - Its initial side lies along ______
 - The terminal side:

Positive angles are generated by ______ rotations of the terminal side. Negative angles are generated by ______ rotations of the terminal side.

3) Definition of Ouadrantal Angle:

An angle in Standard Position with the terminal side lying on an axis.

Ex: Draw an angle in **SP** with the following measures: All drawings must include an *initial side*, a *terminal side*, and *the direction*. In BLUE ink write the quadrant < lies in. In RED in draw & find <'s **Reference angle**.

Measuring Angles Using Radians:

One radian measure is the measure of the central angle of a circle that intercepts an arc equal in length to the radius. $\theta^R = \frac{s}{r}$, where θ^R is the angle in radian measurement, s is the arc length, and r is the radius. Examples of angles measuring one (1) radian measure:

Relationship between Degrees and Radians

Let's find the radian measure of the angle below. Notice, the terminal side has completed one full rotation which is equivalent to the **circumference of the circle**.

(Manually **draw** the **direction** as a positive angle). **Label** the radius as "**r**".

The intercepted arc (s)= _____ radius = _____. Using the formula for radian measure $\theta^R = \frac{s}{r}$, we get $\theta^R = ---_=$ = and in d

and in degree measure =

Therefore, one full revolution in radian measure = Based on this discovery, then fill out the following table:

Rotations	Radian measure	Degree measure
1		
1/2		
1/4		
$\frac{3}{2}$		
$-\frac{3}{4}$		
-1		

Can you find a pattern to make conversions from radians to degrees and from degrees to radian?

Ex – convert to radians a) 30° b) 90° c) -135°

Ex – convert to degrees a) $\frac{2\pi}{3}$ b) $-\frac{5\pi}{3}$ c) 1 radian

Drawing Angles in Standard Position with Radian Measures: Note: Must include initial and terminal sides, direction, and angle.

4) Definition of Coterminal Angles:

Two angles are coterminal if they are in standard position but have possibly different rotations. Ex.: Find one positive and one negative coterminal angle for each problem:

a) 60 degrees

b) $\frac{2\pi}{3}$

The Length [s] of a Circular Arc:

Ex. Find "s" if the central angle of a circle measures 120° and the radius "r" = 10 inches. Label the circle below

By the end of 4.1, you need to have LEARNED the definitions for:

- Angle
- Angle in Standard Position
- Quadrantal Angle
- Coterminal Angles
- Reference Angles