ANGLES AND RADIAN MEASURE - SECTION 4.1

1) Definition of an angle: ()

 An angle is formed by \qquad with a common \qquad .Drawing:

2) Definition of an Angle in Standard Position (SP):

An angle is in standard position if:

- Its vertex is at \qquad
- Its initial side lies along \qquad
- The terminal side: \qquad

Positive angles are generated by \qquad rotations of the terminal side.
Negative angles are generated by \qquad rotations of the terminal side.

3) Definition of Quadrantal Angle:

An angle in Standard Position with the terminal side lying on an axis.
Ex: Draw an angle in SP with the following measures: All drawings must include an initial side, a terminal side, and the direction. In BLUE ink write the quadrant < lies in. In RED in draw \& find <'s Reference angle.

1) 190°

2) 420°

Measuring Angles Using Radians:

One radian measure is the measure of the central angle of a circle that intercepts an arc equal in length to the radius. $\boldsymbol{\theta}^{\boldsymbol{R}}=\frac{\boldsymbol{s}}{\boldsymbol{r}}$, where θ^{R} is the angle in radian measurement, s is the arc length, and r is the radius. Examples of angles measuring one (1) radian measure:

Relationship between Degrees and Radians

Let's find the radian measure of the angle below. Notice, the terminal side has completed one full rotation which is equivalent to the circumference of the circle.
(Manually draw the direction as a positive angle). Label the radius as " \mathbf{r} ".

The intercepted arc (s)= \qquad radius $=$

Using the formula for radian measure $\boldsymbol{\theta}^{\boldsymbol{R}}=\frac{\boldsymbol{s}}{\boldsymbol{r}}$, we get $\quad \boldsymbol{\theta}^{\boldsymbol{R}}=\square=$ Therefore, one full revolution in radian measure $=$ and in degree measure = Based on this discovery, then fill out the following table:

Rotations	Radian measure	Degree measure
1		
$1 / 2$		
$1 / 4$		
$3 / 2$		
$-3 / 4$		
-1		

Can you find a pattern to make conversions from radians to degrees and from degrees to radian?

Ex - convert to radians
Ex - convert to degrees
a) 30°
a) $\frac{2 \pi}{3}$
b) 90°
b) $-\frac{5 \pi}{3}$
c) -135°
c) 1 radian

Drawing Angles in Standard Position with Radian Measures: Note: Must include initial and terminal sides, direction, and angle.
Ex.
a) $\frac{7 \pi}{6}$

d) $\frac{3 \pi}{2}$

4) Definition of Coterminal Angles:

Two angles are coterminal if they are in standard position but have possibly different rotations.
Ex.: Find one positive and one negative coterminal angle for each problem:
a) 60 degrees
b) $\frac{2 \pi}{3}$

The Length [s] of a Circular Arc:

Ex. Find " s " if the central angle of a circle measures 120° and the radius " r " = 10 inches. Label the circle below
\square

By the end of 4.1, you need to have LEARNED the definitions for:

- Angle
- Angle in Standard Position
- Quadrantal Angle
- Coterminal Angles
- Reference Angles

