4.1 Notes - Transformations introduction \& Translations

A transformation is a function that moves or changes a figure in some way to produce a new figure called an image. The original figure is called the preimage. The points on the preimage are the inputs for the transformation and the points on the image are the outputs.

We says the preimage is transformed (or mapped) to the image. All points in the preimage are indicated with a capital letter, as always, while their corresponding image points are indicated with prime notation. For example, A is mapped to A^{\prime} (read as A prime).

A rigid motion is a transformation that preserves size and shape. Another name for a rigid motion is an isometry. Rigid motions preserve angle measures, segment lengths, parallelism, among other things to maintain size and shape. A rigid motion maps lines to lines, rays to rays, and segments to segments.

We will be studying three types of rigid motions (isometries) -
TRANSLATIONS (slides), REFLECTIONS (flips) and ROTATIONS (turns).
Ex. Identify the rigid motion performed, if any.
(

KEY IDEA

Vectors

The diagram shows a vector. The initial point, or starting point, of the vector is P, and the terminal point, or ending point, is Q. The vector is named $\overrightarrow{P Q}$, which is read as "vector $P Q$."
The horizontal component of $\overrightarrow{P Q}$ is 5 , and the vertical component is 3 . The component form of a vector combines the horizontal and vertical components. So, the component form of $\overrightarrow{P Q}$
 is $\langle 5,3\rangle$.

KEY IDEA

Translations

A translation moves every point of a figure the same distance in the same direction. More specifically, a translation maps, or moves, the points P and Q of a plane figure along a vector $\langle a, b\rangle$ to the points P^{\prime} and Q^{\prime}, so that one of the following statements is true.

- $P P^{\prime}=Q Q^{\prime}$ and $\overline{P P^{\prime}} \| \overline{Q Q^{\prime}}$ or

Examples:

Translation rule format:
You can also express a translation along the vector $\langle a, b\rangle$ using a rule, which has the notation $(x, y) \rightarrow(x+a, y+b)$.

EXAMPLE 3 Writing a Translation Rule WATCH

Write a rule for the translation of $\triangle P Q R$ to $\triangle P^{\prime} Q^{\prime} R^{\prime}$.

SOLUTION

To go from P to P^{\prime}, move 4 units left and 1 unit up, along the vector $\langle-4,1\rangle$.
So, a rule for the translation is $(x, y) \rightarrow(x-4, y+1)$.

Ex. Plot the points then perform the indicated translation: 1 unit left and 5 units up $B(-3,-3), C(-1,-1)$ and $D(-1,-4)$
Then identify B^{\prime}, C^{\prime} and D^{\prime} and state the vector in the specified formats.

| $\mathrm{B}(-3,-3)$ | $\mathrm{C}(-1,-1)$ | $\mathrm{D}(-1-4)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{B}^{\prime}(\quad, \quad)$ | $\mathrm{C}^{\prime}(, \quad)$ | $\mathrm{D}^{\prime}(, \quad)$ |

Now draw the vector on the graph.

Write the vector in component form: \qquad
Write the translation rule:

POSTULATE

4.1 Translation Postulate

A translation is a rigid motion.

Because a translation is a rigid motion, and a rigid motion preserves length and angle measure, the following statements are true for the translation shown.

- $D E=D^{\prime} E^{\prime}$
$E F=E^{\prime} F^{\prime}$
$F D=F^{\prime} D^{\prime}$
- $m \angle D=m \angle D^{\prime}$
$m \angle E=m \angle E^{\prime}$
$m \angle F=m \angle F^{\prime}$

When two or more transformations are combined to form a single transformation, the result is a composition of transformations.

Ex. Note the preimage is triangle $A B C$, the first image is triangle $A^{\prime} B^{\prime} C^{\prime}$ and the second image is triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

State the two transformations performed in rule form:

Translation \#1: \qquad

Translation \#2: \qquad

Can these two translations be expressed as one translation? If so, write the rule:

Translation: \qquad

THEOREM

4.1 Composition Theorem

The composition of two (or more) rigid motions is a rigid motion.
Proof Exercise 34, page 174

