5.1 Angles of Triangles Notes

Remember that a triangle is a three-sided polygon. It can be classified according to its sides \& angles.
(\%) KtY IUEAS

Classifying Triangles by Sides

no congruent sides

Isosceles Triangle

at least 2 congruent sides

Equilateral Triangle

3 congruent sides

Classifying Triangles by Angles

Acute
Triangle

Right
Triangle

3 acute angles

Examples: Classify each triangle according to its sides and angles.

EXAMPLE 2

Classify $\triangle O P Q$ by its sides. Then determine whether it is a right triangle.

SOLUTION

Step 1 Use the Distance Formula to find the side lengths.

$$
\begin{aligned}
& O P=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(-1-0)^{2}+(2-0)^{2}}=\sqrt{5} \approx 2.2 \\
& O Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(6-0)^{2}+(3-0)^{2}}=\sqrt{45} \approx 6.7 \\
& P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{[6-(-1)]^{2}+(3-2)^{2}}=\sqrt{50} \approx 7.1
\end{aligned}
$$

Because no sides are congruent, $\triangle O P Q$ is a scalene triangle.
Step 2 Check for right angles. The slope of $\overline{O P}$ is $\frac{2-0}{-1-0}=-2$. The slope of $\overline{O Q}$ is $\frac{3-0}{6-0}=\frac{1}{2}$. The product of the slopes is $-2\left(\frac{1}{2}\right)=-1$. So, $\overline{O P} \perp \overline{O Q}$ and $\angle P O Q$ is a right angle.

So, $\triangle O P Q$ is a right scalene triangle.

Finding Angle Measures of Triangles

When the sides of a polygon are extended, other angles are formed. The original angles are the interior angles. The angles that form linear pairs with the interior angles are the exterior angles.

THEOREM

5.1 Triangle Sum Theorem

The sum of the measures of the interior angles of a triangle is 180°.

Proof page 232
Prove this Theorem Exercise 50, page 236

Examples:

Find the measure of each exterior angle (x) in each example below:

This leads us to our next theorem:

THEOREM

5.2 Exterior Angle Theorem

The measure of an exterior angle of a triangle is equal to the sum of the measures of the two nonadjacent interior angles.

Prove this Theorem Exercise 42, page 235

$$
m \angle 1=m \angle A+m \angle B
$$

Find $m \angle 1$.
> A corollary to a theorem is a statement that can be proved easily using the theorem. The corollary below follows from the Triangle Sum Theorem.

COROLLARY

5.1 Corollary to the Triangle Sum Theorem

The acute angles of a right triangle are complementary.

Prove this Corollary Exercise 41, page 235

$$
m \angle A+m \angle B=90^{\circ}
$$

THEOREM

9.1 Pythagorean Theorem

In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.

We can use the converse of this to classify a triangle by its angles given its side lengths.
Note: "c" must always be the longest side. The other two sides are "a" and " b " (interchangeable)

| If $\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$, |
| :--- | :--- | :--- |
| then the triangle is right. | | If $\mathrm{c}^{2}<\mathrm{a}^{2}+\mathrm{b}^{2}$, |
| :--- |
| then the triangle is acute. |

Examples: Determine if the following triangles are right, acute or obtuse.
Show your work and fill in the box with " < or > or ="

Your turn: Determine if the following triangles are right, acute or obtuse.

4)	5) Side lengths are: $10 \mathrm{~km}, 12 \mathrm{~km}, 13 \mathrm{~km}$	6) Side lengths are: $5 \mathrm{in}, 10 \mathrm{in} ., 8 \mathrm{in}$. 12 km

