5.4 More Notes with 6.5 Notes (continued...)

In 5.4, we talked about how the sides and the angles of an ISOSCELES triangle are related (mark the pictures in the theorems below):

Theorem 5.6-Base Angles Theorem	Theorem 5.7-Converse of the Base Angles Theorem
If two sides of a triangle are congruent, then the	
angles opposite them are congruent.	If two angles of a triangle are congruent, then the sides opposite them are congruent.

We also talked about how the sides and angles of an EQUILATERAL triangle are related (mark the pictures of the corollaries below):

Corollary 5.2 - Corollary to the Base Angles Thm.	Corollary 5.3 - Corollary to the Converse of the Base Angles Theorem If a triangle is equilateral, then it is equiangular. If a triangle is equiangular, then it is equilateral.

But what if the triangle is SCALENE? Is there a relationship between the sides and the angles of a scalene triangle?

Excerpt from Geometer-SketchPad \rightarrow :

In a scalene triangle,
the largest side is opposite the \qquad angle, the medium side is opposite the \qquad angle and the smallest side is opposite the \qquad angle.

This concept is summarized in Theorems 6.9 \& 6.10:

THEOREMS

6.9 Triangle Longer Side Theorem

If one side of a triangle is longer than another side, then the angle opposite the longer side is larger than the angle opposite the shorter side.

Prove this Theorem Exercise 41, page 543

$$
A B>B C \text {, so } m \angle C>m \angle A \text {. }
$$

6.10 Triangle Larger Angle Theorem

If one angle of a triangle is larger than another angle, then the side opposite the larger angle is longer than the side opposite the smaller angle.
Proof page 536

$m \angle A>m \angle C$, so $B C>A B$.

Let's do some examples from p. 537 and others:

6. Given triangle $A B C$ with $m \angle A=40^{\circ}$ and $m \angle B=80^{\circ}$, order the sides from smallest to largest (hint - make a sketch).

