## Sec (7.3) Partial Fractions

Partial Fraction Decomposition is the "Reverse" process of writing a sum (+) or difference (-) of rational expressions as a single rational expression.
rational expressions $\rightarrow$ The quotient of two polynomials. Ex $\rightarrow \frac{2 x-3}{\left(x^{2}-64\right)}$

- In short when we (+) or (-) fractions we find the LCD and "combine" into one fraction.
- To decompose a fraction is to "separate"/ "decompose" one fraction back into a (+) or (-) or two or more fractions.
In order to decompose [used for integration in Calc.] a few things must be checked.

1) Degree of numerator must be less than degree of denominator. [if its an *improper fraction, you must reduce by long division $\rightarrow$ will learn in Calc.]
2) Check the "Type" of decomposition needed. i.e. [Because of Distance Learning -we will only do (a-c)]
a) Linear Factors
b) Repeated Linear Factors
c) Prime-Quadratic Factors [if they factor, they become linear]
d) Repeated Quadratic Factors
e) Improper Fractions*

## Decomposing into Partial Fractions

## STEPS:

1) Factor* each denominator
2) Express the problem as a sum of two fractions with Numerators "A" or "B" use the "factors" for denominators*
3) Eliminate denominators by multiplying each term by the LCD
4) Eliminate " $A$ " by letting the parenthesis next to " $A$ " $=0$. Solve for " $B$ "
5) Eliminate " $B$ " by letting the parenthesis next to " $B$ " $=0$. Solve for " $A$ " **Sometimes a system of Linear equations is needed to find the values**
6) Substitute the values found for " $A$ " and " $B$ " back in Step 2
7) Check to see if the sum of the two partial fractions equals the original fraction.

Example: 1 [Linear Factors] Find the partial fraction decomposition of $\frac{5 x-1}{(x-3)(x+4)}$

$$
\frac{5 x-1}{(x-3)(x+4)}=\frac{A}{(x-3)}+\frac{B}{(x+4)} \quad \rightarrow \text { Mult. ea. term by LCD } \rightarrow[((x-3)(x+4)]
$$



Example: $\mathbf{2}$ [repeated Linear factors] Find the partial fraction decomposition of $\frac{x+2}{x(x-1)^{2}}$
$\frac{x+2}{x(x-1)^{2}}=\frac{A}{x}+\frac{B}{(x-1)}+\frac{C}{(x-1)^{2}} \quad \rightarrow$ Mult. ea. term by $\operatorname{LCD} \rightarrow\left[\mathrm{x}(x-1)^{2}\right]$

$$
\begin{aligned}
X+2 & =A(x-1)^{2}+B x(x-1)+C x \\
& =A\left(x^{2}-2 x+1\right)+B\left(x^{2}-x\right)+C x \\
& =A x^{2}-A 2 x+A+B x^{2}-B x+C x \quad \rightarrow \text { (group) by var \& degree } \\
X+2 & =(A+B) x^{2}+(-2 A-B+C) x+A \quad \rightarrow \text { Use the coefficients of } x+2 \text { to set up a system \& find values }
\end{aligned}
$$

$$
\underline{\text { System }} \rightarrow\left\{\begin{array}{c}
A+B=0 \\
-2 A-B+C=1 \\
A=2
\end{array}\right.
$$

$$
\begin{array}{cc}
A+B=0 & -2 A-B+C=1 \\
2+B=0 & -2(2)-(-2)+C=1 \\
B=-2 & -4+2+C=1 \\
-2+C=1 \\
& C=3
\end{array}
$$

$$
\frac{x+2}{x(x-1)^{2}} \rightarrow \Rightarrow \frac{2}{x}-\frac{2}{(x-1)}+\frac{3}{(x-1)^{2}}
$$

## EXAMPLE 3 WILL BE DONE IN OUR LESSON ON ZOOM

Example: $\mathbf{3}$ [Prime-Quadratic Factors] Find the partial fraction decomposition of $\frac{12 x+52}{\left(x^{2}+3\right)(x+2)^{2}}$

