Section $8.3 \rightarrow$ Intro to Matrices \& Operations w/Matrices

Special "Reads" from your textbook. "Add" these to 'YOUR' 8.3 notes \rightarrow

- Read sec(8.2) \& copy/paste the 3-D "visual Plane" figures of the different types of Solutions for a 3X3 system. [[5 -diagrams $\rightarrow 1$ sol/Infinite sol/3-ex of no sol.]]
- Read in $\operatorname{Sec}(8.3)$ about \rightarrow 1) Properties of Matrices [p.909]

2) Multiply Matrices [p.910-911]
3) Who is A. Caley? [p.909]

A Matrix \rightarrow A rectangular array of number(s) [elements/entries] in rows by columns placed in
[Brackets]... [a]... a is the entry in $1^{\text {st }}$-row $-1^{s^{t} \text {-col. }}$

- Use a Capital letter to 'name' or denoted a matrix
- 'Order'/dimension of a matrix is denoted $m \times n$ where $m=\#$ of rows by $n=\#$ of columns.
- An element/entry of a matrix is denoted by \rightarrow

$$
\begin{gathered}
>A=\left[\mathrm{a}_{i j}\right] \text { where } \boldsymbol{a} \text { is the element of matrix } \mathrm{A} \text { in } \\
\text { The } \boldsymbol{i}^{\text {th }} \text { row }-\boldsymbol{j}^{\text {th }} \text { column. }
\end{gathered}
$$

Square Matrix \rightarrow a Matrix with the same number of rows an columns. i.e. $2 \times 2,3 \times 3$, etc...
EX-1) Given: $A=\left[\begin{array}{cc}5 & -2 \\ -3 & \Pi \\ 1 & 6\end{array}\right]$
a) What is the order of A ?
b) Identify a_{12} and a_{31}

Equal Matrices $\rightarrow \mathrm{A}=\mathrm{B}$ if and only if 1) the matrices have the same order rowXcol-mxn
2) $a_{i j}=b_{i j} \rightarrow$ same position $=$ same element.

Column Matrix \rightarrow Matrix with 1 column \&\& Row matrix \rightarrow Matrix with 1 row
[may have 1 or multiple rows]
[may have 1 or multiple columns]
Scalor Multiplication \rightarrow A scalor ' \boldsymbol{c} ' in advanced math or Matrices is a \mathbb{R} number used to augment an expression or a Matrix. We just multiply each entry of the matrix by the 'scalor'.

ADDITION \oplus \& SUBTRACTION Θ of Matrices \rightarrow have 2-basic "Rules"

1) Matrices to be $+/$ - must have the same "order"
2) + each element in corresponding position \& place result back is same position.

EX-2) Given Matrix A \& B, perform the Matrix Operation(s)
$A=\left[\begin{array}{cc}-4 & 1 \\ 3 & 0\end{array}\right] \quad B=\left[\begin{array}{cc}-1 & -2 \\ 8 & 5\end{array}\right] \quad$ Find $3 A+2 B$

Matrix Multiplication \rightarrow Multiply \rightarrow ROW X COL. [add the product of entries]
RULES \rightarrow The "order" of the 2-matrices doesn't matter as long as....
A) IF the Col of the $1^{\text {st }}$ Matrix = the Rows of the $2^{\text {nd }}$ Matrix , then....
B) The "order" of the product is \rightarrow Row of $1^{\text {st }} \mathrm{X} \mathrm{Col} \mathrm{of} 2^{\text {nd }} \rightarrow[\mathrm{RxC}]$
C) Bonus: 2 square matrices may always be multiplied.

MULTIPLICATION OF MATRICES IS NOT COMMUTATIVE!! AB $\neq B A$
IF $A B=I$ and $B A=I$, where $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ [identity matrix], then the matrices are inverses.
EX-3) Find the product $A B$, if possible. $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 2 \\ 0 & 1\end{array}\right] \quad B=\left[\begin{array}{cc}0 & 3 \\ -7 & 5\end{array}\right]$

$$
\begin{gathered}
A B=\left[\begin{array}{ll}
2 & 3 \\
4 & 2 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
0 & 3 \\
-7 & 5
\end{array}\right]=[\\
3 \times \frac{2 \Longleftrightarrow 2 \times 2}{3 \times 2}
\end{gathered}
$$

