In mathematics, the "Mult. Inverse" property states that it is a number [reciprocall whose product $=1$. i.e. the Mult. Inv. of \boldsymbol{a} is $\frac{1}{a}$ since $\boldsymbol{a}\left(\frac{1}{a}\right)=1$.
In "the world of 'MATRICES'" the only operation that we cannot perform IS division, and the number 1 is represented by the "I-dentity Matrix" $\rightarrow I_{n}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ where n is a 2×2 or can be a 3X3 sq. matrix $I_{n}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$, etc... So, to compensate for not having division, WE....

MULTIPLY BY THE "Mult. INVERSE OF THE MATRIX"

The inverse notation in mathematics is $\mathbf{X}^{\mathbf{- 1}}$, so the inverse of matrix A is denoted by A^{-1}.
$>$ To find the "Mult. Inv." of a square matrix we use the definition ${ }_{[p .922]} \rightarrow$

* 2X2 \rightarrow IF A $=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $A^{-1}=\frac{1}{|A|}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$ where $|\mathbf{A}| \rightarrow * \operatorname{det}(\mathbf{A})^{*}$ [the diff. of the X-product]
$3 X 3 \rightarrow$ use the Calculator. [Or it will be given.] \therefore To prove two matrices are inverses,
If $\mathrm{AA}^{-1}=I$ and $\mathrm{A}^{-1} \mathrm{~A}=I$ then you just proved that the 2 matrices are inverse, and are "invertible." \rightarrow a matrix who has an inverse.
Ex -1) Find the Inverse of A, given: $\quad A=\left[\begin{array}{cc}-1 & -1 \\ -3 & 2\end{array}\right]$

$$
\begin{array}{rlrl}
\mathrm{A}^{-1} & =\frac{1}{|A|}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] & \rightarrow \text { Step } 1 \rightarrow_{\text {Find }}|\mathrm{A}|=-5[\text { [If the } \operatorname{det}(\mathrm{A})=0 \text {, the matrix has no inverse } \& \text { is "Singular"] } \\
& =\frac{1}{-5}\left[\begin{array}{cc}
2 & 1 \\
3 & -1
\end{array}\right] & \leftarrow \text { Step } 2 \text { Switch } \boldsymbol{a}_{11} \text { and } \boldsymbol{a}_{22} \& \text { negate the other diag. entries. } \\
\mathrm{A}^{-1} & =\left[\begin{array}{cc}
\frac{-2}{5} & \frac{-1}{5} \\
\frac{-3}{5} & \frac{1}{5}
\end{array}\right] & & \leftarrow \text { Step } 3 \text { [answer] mult. By the scalor }
\end{array}
$$

Check: If $\boldsymbol{A}^{-1} \boldsymbol{A}=I$ if the product $=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then your work is correct.

$$
\left[\begin{array}{cc}
\frac{-2}{5} & \frac{-1}{5} \\
\frac{-3}{5} & \frac{1}{5}
\end{array}\right]\left[\begin{array}{cc}
-1 & -1 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

MATRIX EQUATIONS \rightarrow You are only responsible for \rightarrow

- The set up of a 2×2 and 3×3 matrix eq. for a system.
- To SOLVE a 2X2 matrix eq.-to solve a 3×3 you need a calculator.

STEPS To solve a system of linear equations using Matrix equations \rightarrow

1) Set up 3-Matrix equations using the system given.
**setup \rightarrow

- Coefficient Matrix =[will always by a square matrix i.e. 2×2 or 3×3]
- Variable Matrix =[will always by a column matrix $\boldsymbol{\rightarrow} 2 \times 1$ or 3×1]
- Constant Matrix =[will always by a column matrix $\rightarrow 2 \times 1$ or 3×1]

2) Find the inverse of the Coefficient Matrix [2×2 use def $/ 3 \times 3$ use calc]
3) Multiply the "Constant" Matrix by the Inverse matrix [from step 2]
4) Write your solution as an ordered pair 2×2 or ordered triple 3×3

Algebraic Representation \rightarrow If $\mathrm{Ax}=\mathrm{B}$ then mult. Both sides by the "Mult. Inv. of $\mathrm{A}^{\prime} \mathrm{A}^{-1}$

$$
\frac{1}{A} \mathrm{Ax}=\frac{1}{A} \mathrm{~B} \text { so } \mathrm{x}=\frac{B}{A} \rightarrow \text { Make sure you place } \mathrm{A}^{-1} \text { in front of constant Matrix. }
$$

Ex of a Matrix Eq and Solution following steps/setup above** $\boldsymbol{\rightarrow}$

Ex1) $2 \times 2 \rightarrow$ Solve the system by using Matrix Equations.
[hint: (1)-set up eq. (2)-find inverse (3)-mult. both sides by inverse to solve]
$\left\{\begin{array}{l}4 x-7 y=-3 \\ 2 x-3 y=1\end{array} \quad\right.$ MATRIX EQUATION
$\left[\begin{array}{ll}4 & -7 \\ 2 & -3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-3 \\ 1\end{array}\right]$
Coeff. Matrix Var. Constants
2X2 2X1 2X1
product vields $\boldsymbol{I} \quad$ product vields $A n s$.

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\left[\begin{array}{l}
8 \\
5
\end{array}\right] \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\left[\begin{array}{l}
8 \\
5
\end{array}\right] \quad \therefore(8,5) \text { is the solution to the system. }
\end{aligned}
$$

Ex 2) Write a Matrix equation for the following 3×3 system.

$$
\left\{\begin{array}{l}
2 x+2 y+3 z=10 \\
4 x-y+z=-5 \\
5 x-2 y+6 z=1
\end{array}\right.
$$

