Section $8.5 \rightarrow$ Determinants \& Cramer's Rule

Determinants $>$

Def.--> A Determinant is a \mathbb{R} number associated with a square matrix.

- While we find the value of the det. of a square matrix, the symbol is different.
- Matrices are in brackets [a] \&\& determinants are inside || lines....
i.e.
$A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ Operations w/matrices yield another matrix.
$\operatorname{det}(A)=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$ To evaluate the det. Of a matrix yields a $\underline{\mathbb{R}}$ number.

To evaluate a 2×2 matrix we use the following procedure/RULE:

$$
\begin{aligned}
\operatorname{det}(\mathrm{A}) & \left.=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| \rightarrow(\mathrm{ad}-\mathrm{bc}) \text { [diff. of the cross product of the entries starting with } \mathrm{a}_{i j}\right] \\
& =(\mathrm{ad}-\mathrm{bc})
\end{aligned}
$$

Ex 1) Evaluate the determinant of matrix $A . \quad A=\left[\begin{array}{cc}4 & 3 \\ -5 & -8\end{array}\right]$

$$
\begin{aligned}
& \operatorname{det}(A)=\left|\begin{array}{cc}
4 & 3 \\
-5 & -8
\end{array}\right| \rightarrow 4(-8)-(-5)(3) \\
&-32+15 \\
& \operatorname{det}(A)=-17
\end{aligned}
$$

A 3X3 matrix is evaluated by $\rightarrow 1>$ Diagonal Method 2> A Calculator
3> Expansion by minors [p.939-not doing this method]
Ex 2) Evaluate: $\left|\begin{array}{ccc}6 & 4 & 0 \\ -3 & -5 & 3 \\ 1 & 2 & 0\end{array}\right|$ we will use the diagonal method \& then the calculator to check.
Process $\rightarrow 1 \rightarrow$ "take out" [write] first two columns and place outside of determinant. [blue below]
$2 \rightarrow$ Mult. entries in diagonal and Add the products together [see below]
$3 \rightarrow$ Subtract sum of products \rightarrow Bottom value - Top value

Cramer's Rule \rightarrow A rule used to solve systems of linear equations using determinants.

- You can use it to solve any type of system. i.e. 2X2 or 3X3, etc...
- Since we use determinants the "matrix" setup of the equations must be a square matrix.
- There is a Major determinant: set up with the Coeff. Of the variables.
- There are Minor determinants: this depends of the number of vars/eq. in system.

RULEs \rightarrow

1) Set up \& evaluate the Major det. \boldsymbol{D} first. If it equals \boldsymbol{O}, there is no solution.
2) If Major $\neq 0$, then set up \& evaluate all the minor det. i.e. $\mathbf{D}_{\mathrm{x}}, \mathbf{D}_{\mathrm{y}}, \mathbf{D}_{\mathrm{z}}$, etc...
3) Set up for minors- \rightarrow

- $1^{\text {st }}$ col [x-values], $2^{\text {nd }}$ col [y-values], etc...
- $D_{x} \rightarrow x$-col gets "constants"-the rest of the col get coeff. Of var.
- $\mathrm{D}_{\mathrm{y}} \rightarrow \mathrm{y}$-col gets "constants"
- $\mathrm{D}_{\mathrm{z}} \rightarrow$ z-col gets "constants"

4) To find the actual var values divide the Minor(s) det. By the Major det.

$$
\begin{gathered}
x=\frac{D x}{D} \quad y=\frac{D y}{D} \quad z=\frac{D z}{D} \quad \rightarrow \text { this quotient yields the solution to the system: } \\
(x, y) \text { or }(x, y, z), \text { etc... }
\end{gathered}
$$

Ex 1) Solve the system Using Cramer's Rule $\rightarrow\left\{\begin{array}{l}4 x-7 y=-3 \\ 2 x-3 y=1\end{array}\right.$
Coeff $\rightarrow \mathrm{D}=\left|\begin{array}{ll}4 & -7 \\ 2 & -3\end{array}\right| \rightarrow-12+14$
$D=2$

$$
\begin{array}{cc}
D_{x}=\left|\begin{array}{cc}
-3 & -7 \\
1 & -3
\end{array}\right| & D_{y}=\left|\begin{array}{cc}
4 & -3 \\
2 & 1
\end{array}\right| \\
D_{\mathrm{x}}=\mathbf{1 6} & \mathrm{D}_{\mathrm{y}}=\mathbf{1 0} \\
\mathrm{X}=\frac{16}{2} & \mathrm{y}=\frac{10}{2}
\end{array}
$$

Ex 2) Use Cramer's Rule to solve:
$\left\{\begin{array}{l}3 x-2 y+z=16 \\ 2 x+3 y-z=-9 \\ x+4 y+3 z=2\end{array}\right.$

Area of a \bigwedge with verticies $\rightarrow\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \&\left(x_{3}, y_{3}\right)$ use \oplus to always yield +Area.
Set up the determinant as follows $\rightarrow A= \pm \frac{1}{2}\left|\begin{array}{lll}\mathrm{x} 1 & \mathrm{y} 1 & 1 \\ \mathrm{x} 2 & \mathrm{y} 2 & 1 \\ \mathrm{x} 3 & \mathrm{y} 3 & 1\end{array}\right|$
Example of Using determinants to find the area of a triangle given the 3-vertices.

Use determinants to find the Area of a Triangle with vertices (9, 8), ($-5,-2$), \& ($1,-6$).
$A= \pm \frac{1}{2}\left|\begin{array}{ccc}9 & 8 & 1 \\ -5 & -2 & 1 \\ 1 & -6 & 1\end{array}\right|$
[[evaluate by diagonal method OR a calculator $\rightarrow \operatorname{det}(\mathrm{A})=116]]$
$= \pm \frac{1}{2}(116)$
**Show work for diagonal method below
$A=58$ square units

