Pre-Calculus - Chapter 2 Study Guide

This is a summary of Chapter 2. The indicated Section problems are meant as a quideline to the type of problems that are on the test. You DO NOT have to do all of them. It is suggested to do a couple or more (as needed) from the odds and check the answers on the back of the book. If you feel confident on a given section, skip it and concentrate on those sections where you feel you need the most help.

2.1-Operations with Complex Numbers a + bi

2.2- Graphing Parabolas: Prob. \rightarrow (\#17-43)

- Vertex. $x=\frac{b}{2 a}$ then plug in " x " to find " y ". The vertex is a point.
- Find the intercepts: x-int \rightarrow set $y=0 \quad y$-int \rightarrow set $x=0$.
- Find the equation and graph the axis of symmetry. $x=\frac{-b}{2 a}$ The axis of symmetry is a line.
- Graph the vertex, and intercepts. Use reflection to graph additional points. There should be at least 5 points, unless otherwise indicated. (There may be more points requested on the test). Graph the parabola. (Must look symmetric about the axis of symmetry).
- The Maximum is the y-value of the highest point.
- The Minimum is the y-value of the lowest point.
- The Domain is all the possible x-values. For parabolas opening up or down, the Domain is $(-\infty, \infty)$.
- The Range is all the possible y-values from [Max/Min]. It varies depending on the parabola.

2.2- Maximum Area Prob. \rightarrow (\#65-70)

- Include drawing.
- Use the equation for the length of the fence and the equation of the Area, either $A(I)$ or $A(w)$.
- Find the vertex. $\rightarrow \boldsymbol{X}$-Value will be length or width. \boldsymbol{Y}-Value will be the MAX AREA
- Find the other dimension with the correct units.

2.3- Graphing Polynomial Functions: Prob. \rightarrow (\#41-63)

- Find all the zeros by factoring and setting $=0$
- Use the Fundamental Theorem of Algebra to determine if you have the correct number of solutions. The degree of the polynomial = number of solutions. Remember that solutions could be repeated. Ex. $x=3, x=3, x=1$ count as 3 solutions. Therefore the polynomial's degree $=3$.
- Find the y-intercept. Set $x=0$.
- Approximate the Critical Points.
- Use the end-behavior and the number of turns $(n-1)$ to graph.
2.4- Finding the zeros of Polynomial Functions, Remainder and Factor Theorems: Prob. \rightarrow (\#1-45)
- Practice dividing polynomials using Long and Synthetic Division.
- The Remainder Theorem (If a polynomial is divided by $(x-c)$, then $f(c)=$ Remainder)
- The Factor Theorem (Iff(c)=0,then $(x-c)$ is a factor of the polynomial.)

2.5-Using the Rational Root Theorem to find the rational zeros of Polynomial Functions. Finding All the Zeros of Polynomial Functions. Prob. \rightarrow (\#1-37).

- Find the possible rational zeros $\left(\frac{P}{Q}\right.$ ' $\left.s\right)$ - Rational Root Theorem
- Find one that works using the remainder and factor theorems. Ex: If $f(2)=0$, then $x-2$ is a factor.
- Use synthetic division to find the remaining factors to factor completely.
- Set each factor $=0$ and solve.
- If a quadratic factor does not factor further, then use the quadratic formula to solve it. This will give you 2 zeros that are either irrational or imaginary. Only the $\left({ }_{Q}^{P}\right.$'s) will give you the possible rational zeros.
- Find the zeros.
- Use Descartes's Rule of Signs to determine the possible real positive and the possible real negative zeros.
2.6- Graphing Rational Functions: Prob. \rightarrow (\#57-87). (Also review the study guide for 2.6)
- Find the Vertical Asymptote(s): (VA) and Holes. [These exist if and only if there is a Domain Restriction]
***Factor the numerator and denominator:
- If any factor from the denominator cancels with factors from the numerator, set $=0$ and that will give you the x-value [Domain Restr.] of a hole in the graph. To find the y-value, plug in the x-value into $f(x)$. The holes are points (x, y). **remember to simplify $F(x)$ before finding the y-value
- Factors from the denominator that do not cancel will become Vertical Asymptotes. Set $=0$ and solve for $\mathbf{x} \rightarrow$ Domain restriction(s) that are not Holes.
- There may be no Vertical Asymptote or several Vertical Asymptotes. Technically, there is no limit to the number of Vertical Asymptotes in Polynomial Functions.
- Note: Vertical Asymptotes are lines, therefore the equation will be $\mathbf{x}=$ Domain Restr.
- Finding Horizontal Asymptote: (HA) if any. ($\mathrm{y}=\mathrm{constant} \mathrm{)}. \mathrm{Rules:}$
- 1- If the degree of the numerator < the degree of the denominator, then $y=0$. [x -axis]
- 2-If the degree of the numerator $=$ the degree of the denominator, then $y \underset{L C D C n}{L C N u m}$.
- 3- If the degree of the numerator > the degree of the denominator, then NO HA.
- There can be 0 or 1 Horizontal Asymptote.
- Note: The Horizontal Asymptote is a line, therefore the equation will be $\mathbf{y}=$ \#
- Finding Slant Asymptote: (SA)
- If the degree of the numerator > the degree of the denominator by exactly one unit, then there is a Slant Asymptote.
- Use synthetic or long division to divide.
- The Slant Asymptote will be $\mathbf{y}=$ quotient of the division. Disregard the remainder.
- Note: The Slant Asymptotes is a line, therefore the equation is $\mathbf{y}=$ quotient of the division
- Find the y-intercept: set $x=0$ and solve.
- Find the x -intercept(s): set $\mathrm{f}(\mathrm{x})=0$ and solve. [set -numerator- $\mathrm{p}(\mathrm{x})=0$]
- Use tables of values with at least 3 points each to the left, right, and between Vertical Asymptotes. Try to use x values close to the asymptotes.
- Graph the branches.

2.7- Solve polynomial and rational inequalities: Prob. \rightarrow (\#1-59)

- Find the zeros and Domain restriction(s) (if any).
- Draw a number line with intervals including the zeros and restrictions.
- Test values of " x " on each interval.
- (Parenthesis) for $\infty,-\infty$, restrictions and if function contains $>$ or $<$.
- [Brackets] for zeros if function contains \leq or \geq.
- Test values of " x " on each interval.
- Write the solution by selecting the interval(s) that satisfy the given function.
2.8- Prob. \rightarrow \#94, 95, 97 Modeling with variation
- Direct variation: $\mathrm{y}=\mathrm{kx}$
- Inverse variation: $y_{\bar{x}}^{k}$
- Joint variation: $y=k(a)(b)(c)$
- Combined variation: combination of direct, inverse and/or joint.

