CH 5 - Congruent Triangles Short Cuts

Parts of triangles: Triangles are made of 6 parts: 3 angles and 3 sides.
Ex: \quad The parts of $\triangle \mathrm{ABC}$ are: $<A,<B,<C, \overline{A B}$ or $c, \overline{B C}$ or a, and $\overline{A C}$ or b

EX.: $\triangle Q P R \cong \Delta J L K$

Write the congruency statements for this ex. in 2 other ways.
\qquad and \qquad
Which corresponding parts are congruent?

1. $<Q \cong<J$
2.
3.
4.
5.
6.

CORRESPONDING PARTS OF CONGRUENT TRIANGLES ARE CONGRUENT, (CPCTC)

If you can prove that two triangles are congruent by any of the (5) methods below, then the corresponding parts not mentioned are automatically congruent.

Technically, to prove that two triangles are congruent, you would need to prove that ALL SIX corresponding parts are congruent.

Good News!!! There are shortcuts. In fact, we have 5 shortcuts that work and 2 shortcuts that do not work.

Good Shortcuts:

1) Side-Side-Side Congruency Theorem (SSS): If three sides of a triangle are congruent to the corresponding three sides of another triangle, then the triangles are congruent.

This is our first shortcut. Whenever SSS is true, then the 3 pairs of corresponding angles will automatically be \cong, and thus saving us a lot of work. This is true for all shortcuts.

Ex. These two triangles are \cong by the SSS Congruency Theorem.

Write the congruency statements for this ex. in 3 ways
Which are the corresponding parts given as congruent?

1) \qquad 2) \qquad and 3) \qquad
Therefore, if these 2 triangles are congruent, what other parts are congruent?
2) \qquad 2) \qquad and 3) \qquad

Why? \qquad
2) Side-Angle-Side Congruency Theorem (SAS): If two sides and the included angle of one triangle are congruent to the corresponding two sides and the included angle of another triangle, then the triangles are congruent. (Included means between).

Ex. These two triangles are \cong by the SAS Congruency Theorem.

Write the congruency statements for this ex. in 3 ways
Which are the corresponding parts given as congruent?

1) \qquad 2) \qquad and 3 \qquad
Therefore, if these 2 triangles are congruent, what other parts are congruent?
2) \qquad 2) \qquad and 3) \qquad
Why? \qquad
3) Angle-Side-Angle Congruency Theorem (ASA): If two angles and the included side of one triangle are congruent to the corresponding two angles and the included side of another triangle, then the triangles are congruent.
Ex. These two triangles are \cong by the ASA Congruency Theorem.

Write the congruency statements for this ex. in 3 ways
$\overline{\text { Which are the corresponding parts given as congruent? }}$

1) \qquad 2) \qquad and 3) \qquad
Therefore, if these 2 triangles are congruent, what other parts are congruent?
2)

\qquad
\qquad 2) \qquad and 3) \qquad
Why? \qquad
4) Angle-Angle-Side Congruency Theorem (AAS or SAA): If two angles and a non-included side of one triangle are congruent to the corresponding two angles and the non-included side of another triangle, then the triangles are congruent.
Ex. These two triangles are \cong by the AAS Congruency Theorem

Write the congruency statements for this ex. in 3 ways
Which are the corresponding parts given as congruent?

1) \qquad 2) \qquad and 3) \qquad

Therefore, if these 2 triangles are congruent, what other parts are congruent?

1) \qquad 2) \qquad and 3)
\qquad
Why?
2) Hypotenuse-Leg Congruency Theorem (HL): If the hypotenuse and a leg of a right triangle are congruent to the corresponding hypotenuse and leg of another right triangle, then the triangles are congruent.
Ex. These two triangles are \cong by the HL Congruency Theorem

Write the congruency statements for this ex. in 3 ways
Which are the corresponding parts given as congruent?

1) \qquad 2) \qquad

Therefore, if these 2 triangles are congruent, what other parts are congruent?

1) \qquad 2) \qquad 3) \qquad \& 4) \qquad

Why? \qquad

Bad Shortcuts: Do not work. Do not prove that triangles are \cong.

1) Angle-Angle-Angle (AAA). Why not? The best way to understand why AAA does not work is to think of equilateral triangles where each angle $=60^{\circ}$. Therefore, all corresponding angles are congruent. However, equilateral triangles come in many sizes, and thus not necessarily \cong.

2) Side-Side-Angle (SSA). Two sides and a non-included angle. Does not prove that triangles are congruent.

