6.1-6.2 Notes – Solving Triangles

To solve a triangle means find the length of its sides and the measurement of its angles. A triangle has 6 parts (3 angles and 3 sides). In order to solve a triangle, you will be given the length or measure of some of its parts. Your job is to find the missing lengths of sides of missing angle measures.

(6.1) Law of Sines:	$\frac{a}{sinA} = \frac{b}{sinB} = \frac{c}{sinC}$	or	$\frac{sinA}{a} =$	$\frac{sinB}{b} =$	sinC c
(6.2) Law of Cosines:	1) $a^2 = b^2 + c^2 - 2bc$ 2) $b^2 = a^2 + c^2 - 2ac$ 3) $c^2 = a^2 + b^2 - 2ab$	cos A cos B cos C			

- If the triangle is a right triangle, use right triangle trig (SOHCAHTOA) (Chpt.4)
- Use the <u>Law of Sines</u> for oblique triangles, given AAS, ASA, and SSA. (6.1) Remember that SSA is the ambiguous case, where the answer could be no triangle, 1 triangle, or 2 triangles. (6.1)

• Use the <u>Law of Cosines</u> for oblique triangles, given SAS or SSS. (6.2)

- SAS: 1) Find the missing side.
 - 2) Find the smallest angle (if not given).
 - 3) Find the other angle using geometry.
 - SSS: 1) Find the largest angle
 - 2) Use the Law of Sines to find any of the other 2 angles.
 - 3) Find the third angle using geometry.

AREA OF TRIANGLES USING TRIGONOMETRY:

- If at least one angle is known: Area = $\frac{1}{2}$ (side)(side)(sin of included angle).(6.1) If you are given SAS, then just plug in the numbers. If you are given AAS, or SSA, use LS to "force" SAS. (6.1)
- If you are given SSS, then use <u>Heron's Formula</u>: (6.2)

$$Area = \sqrt{s(s-a)(s-b)(s-c)}$$

where s is the semi-perimeter, and a, b, c, are the sides of the triangle.