\qquad
Answer each of the following questions in the space provided. SHOW YOUR WORK!

For questions 1-20, match each of the following with its definition/characteristic.

The choices may be used more than once or not at all.

1) Drawing tools
2) Perpendicular Lines
3) Construction tools
4) Altitude of a triangle
5) Perpendicular Bisector
6) Parallel Lines
7) Segment Bisector
8) Distance from a point to a line
9) Orthocenter
10) Concurrent Lines
11) Incenter
12) Angle bisector
13) Inscribed circle
14) Point of concurrency
15) Circumcenter
16) Euler Line
17) Centroid
18) Midsegment of a triangle
19) Median of a triangle
20) Circumscribed circle
a. The point of concurrency of the three altitudes of a triangle.
b. A ray which divides an angle into two congruent parts.
c. A segment from a vertex of a triangle perpendicular to the line containing the opposite side.
d. A line, segment, or ray intersecting the midpoint of a segment.
e. A segment whose endpoints are the midpoints of two sides of a triangle
f. The largest possible circle within a triangle.
g. Coplanar, non-intersecting lines.
h. Three or more lines intersecting at one point.
i. The length of the perpendicular segment from a point to a line.
j. A line that contains the centroid, orthocenter and circumcenter of a triangle.
k. The point of a triangle equidistant from the three sides of the triangle.
1. Ruler \& protractor
m . A segment joining a vertex of a triangle with the midpoint of the opposite side.
n . The point of concurrency of the three medians of a triangle.
o. A line, segment, or ray intersecting the midpoint of a segment and perpendicular to the segment.
p. The point of concurrency of the three perpendicular bisectors of the sides of a triangle.
q. Lines intersecting to form right angles.
r. The point of intersection of three or more lines.
s. A circle containing the three vertices of a triangle.
t. Compass \& straightedge.

Fill in the blank.
21) The largest side of a triangle is opposite the \qquad .
22) The \qquad of a triangle is also called the "center of mass" of the triangle.
23) The shortest distance from a point to a line is along a \qquad line drawn to the line.
24) A midsegment of a triangle is parallel to and \qquad the length of the third side of the triangle.
25) The three midsegments of a triangle form four

CONSTRUCT the requested items in the allotted spaces for questions 26-29. SHOW YOUR ARCS!

30a) Superintendent Dotres wishes to build a new school on a newly acquired parcel of land. The land is in the form of triangle with three main roads on each side. He wants the new school to be the same distance from each of three main roads. What point of concurrency should he find for the new school's location?

30b) An amusement park owner wants to place a garbage can equidistant from the entrances to three main rides - the Gravitron, the Crazy Mouse roller coaster and the bumper cars. What point of concurrency should the amusement park owner find?

Point G is the centroid of $\triangle A B C, A D=8, A G=10, B E=10$ and $C D=18$. Find each measure.

31) $\mathrm{BC}=$ \qquad
32) $\mathrm{CG}=$ \qquad
33) $\mathrm{GE}=$ \qquad 34) $\mathrm{EA}=$ \qquad
35) $\mathrm{GD}=$ \qquad

Point H is the circumcenter of $\triangle B C D$. Find each measure. Round any decimal answers to the nearest tenth.

36) $\mathrm{CD}=$ \qquad
37) $\mathrm{CE}=$ \qquad
38) $\mathrm{HD}=$ \qquad
39) $\mathrm{HG}=$ \qquad

Point H is the incenter of $\triangle B C D$. Find each measure. Round any decimal answers to the nearest tenth.

40) $\mathrm{EH}=$ \qquad
41) $\mathrm{HG}=$ \qquad
42) $\mathrm{HD}=$ \qquad
43) $\mathrm{DF}=$ \qquad
44) $\mathrm{m} \angle G B E=46^{\circ}$. What is $\mathrm{m} \angle B H E$?
46) Point P is the point of concurrency of the three altitudes of $\triangle \mathrm{ABC}$. $\mathrm{BP}=61 \mathrm{~mm}, \mathrm{PF}=11 \mathrm{~mm}$. Find BF .

Find the indicated measurement/value in each problem below.

51) Order the sides from shortest to longest.

52) Order the angles from smallest to largest.

