Pre Calculus		Ch 8 Matrix Practice & systems	1)
Γ	lame:	Date:Per:Per:	Break-even <i>point:</i>
			Explain:
	to produce each bi the break-even po	toSave-ON] anufactures bicycles, has a fixed cost of \$100,000. It costs \$100 cycle. The selling prices is \$300 per bike. Determine <u>int</u> , explain what this point means and determine what is the of bikes that need to be sold to start making a profit.	
	C(x)=	R(x)=	Minimum number of bikes to start making a profit →
			 2) The value of b = The value of m =
2)	For the linear funct Set up a *system to solve	tion f(x) = $mx + b$, $f(-3) = 23$ and $f(2) = -7$. Find m and b . this \rightarrow	3) First # →
	{		Second # → 4)
3)	second number is s	imes a first number [f] and twice a second number [n] is 8. If th subtracted from twice the first number the result is 3.	e 5)
VAR		[Declare Variables & Set up a *system to solve] →	6)
	{		
4)		a System of Linear equations in 2-variables is called a(n)?	
5)	The "solution " to a	a System of Linear equations in 3-variables is called a(n)?	
6)		It may be used to <i>solve</i> a System of Linear equations.	$\begin{bmatrix} 7 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
7)	Write a <u>Matrix equ</u> [hint: must be in stand	uation for the *system use to solve <i>prob. #3</i> above. dard form]→	8)
Sys.	→		a)
8)	Given the matrix A	below, Find: a) the Order of Matrix A	b)
	b) the <i>Scalar Product</i>		
		$\mathbf{A} \xrightarrow{\bullet} 5 \begin{bmatrix} 5 & -8 & 0 \\ 7 & 1 & -2 \\ 3 & 2 & 6 \end{bmatrix}$	9) 10) a) b)
			- 1

c)

9) Solve the following system by using Cramer's Rule. SHOW ALL WORK FOR CREDIT!! Set up each determinant.

$$\begin{cases} 2x - 7y = 2\\ 3x + y = -20 \end{cases}$$

10) Fill in the blanks: a) To use Cramer's Rule The matrix must be a ______. b) If A = $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, the Matrix is Invertible If and only if ______. c) What property of Algebra does not work with Matrices? ______.

EXTRA CREDIT Solve the following system using Cramer's Rule. Show the <u>set-up</u> of the *Major and Minor(s) determinants*. [Use a calculator to evaluate the determinants.]

 $\begin{cases} 2x + 2y + 3z = 10 \\ 4x - y + z = -5 \\ 5x - 2y + 6z = 1 \end{cases}$