Pre Calculus
Name: \qquad Date: \qquad Per: \qquad

SHOW ALL WORK UNDER PROBLEMs FOR CREDIT>

Work on this WS [AutoSave-ON]

1) A company that manufactures bicycles, has a fixed cost of $\$ 100,000$. It costs $\$ 100$ to produce each bicycle. The selling prices is $\$ 300$ per bike. Determine the break-even point, explain what this point means and determine what is the minimum number of bikes that need to be sold to start making a profit.

$$
C(x)=
$$

\qquad $R(x)=$ \qquad
2) For the linear function $\mathrm{f}(\mathrm{x})=\boldsymbol{m} \mathbf{x}+\mathbf{b}, f(-3)=23$ and $f(2)=-7$. Find \boldsymbol{m} and \mathbf{b}. Set up a *system to solve this \rightarrow

3) The sum of three times a first number $[f]$ and twice a second number $[n]$ is 8 . If the second number is subtracted from twice the first number the result is 3 .
Find the numbers. [Declare Variables \& Set up a *system to solve] \rightarrow
VARs:

Let $\boldsymbol{f}=$	
Let $\boldsymbol{n}=$	

4) The "solution" to a System of Linear equations in 2-variables is called a(n)?
5) The "solution" to a System of Linear equations in 3-variables is called a(n)?
6) List ALL 5 ways that may be used to solve a System of Linear equations.
7) Write a Matrix equation for the *system use to solve prob. \#3 above. [hint: must be in standard form] \rightarrow
Sys. $\rightarrow\{$
8) Given the matrix \mathbf{A} below, Find: a) the Order of Matrix A
b) the Scalar Product
$A \rightarrow 5\left[\begin{array}{ccc}5 & -8 & 0 \\ 7 & 1 & -2 \\ 3 & 2 & 6\end{array}\right]$
1)

Break-even point: \qquad

Explain: \qquad
\qquad

Minimum number of bikes to start making a profit \rightarrow
2) The value of $b=$ \qquad

The value of $m=$ \qquad
3) First \# \rightarrow

Second \# \rightarrow
4)
5)
6)
\qquad

9) Solve the following system by using Cramer's Rule. SHOW ALL WORK FOR CREDIT!! set up each determinant.
$\left\{\begin{array}{l}2 x-7 y=2 \\ 3 x+y=-20\end{array}\right.$
10) Fill in the blanks: a) To use Cramer's Rule The matrix must be a \qquad .
b) If $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, the Matrix is Invertible If and only if \qquad .
c) What property of Algebra does not work with Matrices? \qquad .

EXTRA CREDIT $>$ Solve the following system using Cramer's Rule. \rightarrow Ans:
Show the set-up of the Major and Minor(s) determinants. [Use a calculator to evaluate the determinants.]

$$
\left\{\begin{array}{l}
2 x+2 y+3 z=10 \\
4 x-y+z=-5 \\
5 x-2 y+6 z=1
\end{array}\right.
$$

