Name: \qquad ANSWERS

Date: Per: \qquad
SHOW [Type/Pen] ALL WORK UNDER PROBLEMs FOR CREDIT \rightarrow ans. in blue\}
1)

A company that manufactures bicycles, has a fixed cost of $\$ 100,000$. It costs $\$ 100$ to produce each bicycle. The selling prices is $\$ 300$ per bike. Determine the break-even point, explain what this point means and determine what is the minimum number of bikes that need to be sold to start making a profit.

$$
C(x)=100 X+100,000 _\quad \mathrm{R}(x)=_300 X
$$

$300 x=100 x+100,000$
$C(500)=100(500)+100,000$
$3 x=x+1000$
$=50,000+100,000$
$2 x=1000$
$=150,000$

$$
X=500
$$

2) For the linear function $f(x)=\boldsymbol{m} x+\mathbf{b}, f(-3)=23$ and $f(2)=-7$. Find \boldsymbol{m} and \mathbf{b}.

Set up a *system to solve this \rightarrow
3) The sum of three times a first number $[f]$ and twice a second number $[n]$ is 8 . If the second number is subtracted from twice the first number the result is 3.
Find the numbers. [Declare Variables \& Set up a *system to solve] \rightarrow
VARs:

Let $\boldsymbol{f}=$	the value of the first number
Let $\boldsymbol{n}=$	the value of the second number

4) The "solution" to a System of Linear equations in 2-variables is called a(n)?
5) The "solution" to a System of Linear equations in 3-variables is called a(n)?
6) List ALL 5 ways that may be used to solve a System of Linear equations.
7) Write a Matrix equation for the *system use to solve prob. \#3 above.
[hint: must be in standard form] \rightarrow

$$
\left\{\begin{array}{l}
3 x+2 y=8 \\
2 x-y=3
\end{array}\right.
$$

8) Given the matrix A below, Find: a) the Order of Matrix A
b) the Scalar Product

$$
\mathbf{A}=5\left[\begin{array}{ccc}
5 & -8 & 0 \\
7 & 1 & -2 \\
3 & 2 & 6
\end{array}\right]
$$

1)

Break-even point: $(500,150000)$
Explain: If the company produces 500 bikes @ a cost of $\$ 150,000$, there is no Profit OR loss.

Minimum number of bikes to start making a profit \rightarrow
2) The value of $b=$ \qquad

The value of $m=$ \qquad
3)

First\# $\rightarrow 2$

Second \# $\rightarrow 1$
4)

Ordered Pair

5)

Ordered Triple
6) Graphing

Substitution
Addition/Elimination
Cramer's Rule
Matrix Equations
7)

8)
a) \qquad
b) $\left[\begin{array}{rcr}25 & -40 & 0 \\ 35 & 5 & -10 \\ 15 & 10 & 30\end{array}\right]$
9)

> 10) a) square matrix
> b) $a d-b c \neq 0$
> c) commutative property
9) Solve the following system by using Cramer's Rule. SHOW ALL WORK FOR CREDIT!! Set up each determinant.
$\left\{\begin{array}{l}2 x-7 y=2 \\ 3 x+y=-20\end{array}\right.$
Coeff $\rightarrow\left|\begin{array}{cc}2 & -7 \\ 3 & 1\end{array}\right|$
det $=23$

$\left.\begin{aligned} & y \left.\rightarrow \frac{\mid c}{2} \begin{array}{c}2 \\ 3\end{array} \right\rvert\, \\ & 23\end{aligned} \right\rvert\,$
$(-6,-2)$
10) Fill in the blanks: a) To use Cramer's Rule The matrix must be a \qquad square matrix .
b) If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, the Matrix is Invertible If and only if __ad - $\mathbf{b c} \neq 0$.
c) What property of Algebra does not work with Matrices? \qquad

EXTRA CREDIT \rightarrow Solve the following system using Cramer's Rule. \rightarrow Ans: $(\mathbf{- 1 , 3 , 2)}$ Show the set-up of the Major and Minor(s) determinants. [Use a calculator to evaluate the determinants.]

$$
\left\{\begin{array}{l}
2 x+2 y+3 z=10 \\
4 x-y+z=-5 \\
5 x-2 y+6 z=1
\end{array}\right.
$$

$$
\mathrm{D}=\left|\begin{array}{ccc}
2 & 2 & 3 \\
4 & -1 & 1 \\
5 & -2 & 6
\end{array}\right| \quad \rightarrow \quad \mathrm{D}=-\mathbf{5 5}
$$

$$
D_{x}=\left|\begin{array}{ccc}
10 & 2 & 3 \\
-5 & -1 & 1 \\
1 & -2 & 6
\end{array}\right|
$$

$$
D_{y}=\left|\begin{array}{ccc}
2 & 10 & 3 \\
4 & -5 & 1 \\
5 & 1 & 6
\end{array}\right|
$$

$$
D_{z}=\left|\begin{array}{ccc}
2 & 2 & 10 \\
4 & -1 & -5 \\
5 & -2 & 1
\end{array}\right|
$$

$$
D_{x}=55
$$

$$
D_{y}=-165
$$

$$
D_{z}=-110
$$

$$
x=\frac{55}{-55}
$$

$$
y=\frac{-165}{-55}
$$

$$
y=3
$$

$$
\begin{gathered}
z=\frac{-110}{-55} \\
z=2
\end{gathered}
$$

