Congruence and Similarity

1) Triangle $E F G$ is congruent to triangle $J K L$.

What is $K L$?

2) In the diagram below $\triangle P Q R \cong \triangle J K L$. Find the values of x, y, and z.

A. $x=40^{\circ}, y=65^{\circ}, z=75^{\circ}$
B. $x=40^{\circ}, y=75^{\circ}, z=65^{\circ}$
C. $x=75^{\circ}, y=65^{\circ}, z=40^{\circ}$
D. $x=75^{\circ}, y=40^{\circ}, z=65^{\circ}$
3) In the diagram below $\triangle A B C \cong \triangle D F G$. Select All the true statements.

A. $A B=11$
B. $D G=12$
C. $m \angle D=35^{\circ}$
D. $m \angle F=35^{\circ}$
E. $m \angle G=35^{\circ}$
4) In the figure below $\triangle A B C \cong \triangle D C B$. Select All the true statements.

A. $x=1$
B. $x=2$
C. $A C=10$
D. $\angle A B C \cong \angle C B D$
E. $\angle A C B \cong \angle C B D$

Congruence and Similarity

5) Triangle $E R T$ is congruent to triangle $C V B$.

- The measure of $\angle E$ is 32°.
- The measure of $\angle C$ is $(7 x+4)^{\circ}$.
- The measure of $\angle B$ is $(15 x+7)^{\circ}$.

What is the measure of $\angle V$?
A. $m \angle V=4^{\circ}$
B. $m \angle V=32^{\circ}$
C. $m \angle V=67^{\circ}$
D. $m \angle V=81^{\circ}$
6) If $\triangle A B C \cong \triangle S D F$ and $m \angle A=3 x+5, m \angle B=5 x-9$ and $m \angle S=1.5 x+17$. Find $m \angle B$.
A. $m \angle B=7^{\circ}$
B. $m \angle B=8^{\circ}$
C. $m \angle B=26^{\circ}$
D. $m \angle B=31^{\circ}$
7) Find the length of $\overline{U S}$, given that $\angle P \cong \angle S$ and the length of $\overline{P Q}$ is 20 .

A. $U S=6$
B. $U S=8$
C. $U S=14$
D. $U S=20$
8) In this diagram, $\Delta J K L \sim \Delta S T U$

Based on the measurements in the diagram, what is the measure of $\angle K$?
A. 15°
B. 30°
C. 45°
D. 60°

Congruence and Similarity

9) In the figure $\Delta S T U \cong \triangle W X Y$. What are the values of x, y, and z ?

A. $x=92^{\circ}, y=6.5, z=4.4$
B. $x=92^{\circ}, y=10, z=3$
C. $x=23^{\circ}, y=6.5, z=4.4$
D. $x=23^{\circ}, y=10, z=3$
10) Triangle $E F G$ is similar to triangle $J K L$.

- The measure of $\angle E$ is 32°.
- The measure of $\angle K$ is 49°.

What is the measure of $\angle F$?
A. 32°
B. 49°
C. 81°
D. 99°
11) Given the two triangles shown, find the value of x.

$x=\square$

Congruence and Similarity

12) Quadrilateral QRST is shown, with side lengths in inches (in.) and angle measures in degrees.

Lynn draws quadrilateral $W X Y Z$, which is similar to quadrilateral $Q R S T$, with $W X=5$ in. Select All the true statements.
A. $W Z=\frac{15}{2}$ in.
B. $m \angle Z=45^{\circ}$
C. $Z Y=25 \mathrm{in}$.
D. $m \angle X=135^{\circ}$
E. The area of quadrilateral $W X Y Z$ is $\frac{525}{8} \mathrm{in}^{2}$
13) Triangle MNO is shown.

Which triangle can be shown to be congruent to triangle MNO with only the given information?
A.

B.

C.

D.

Congruence and Similarity

14) Quadrilateral $S T U V$ is similar to quadrilateral $G H I J$.

- The length of $\overline{S V}$ is $(x+1)$.
- The length of $\overline{S T}$ is 3 .
- The length of $\overline{U V}$ is 4 .
- The length of $\overline{G J}$ is 17.5 .
- The length of \bar{J} is 10 .

What is the value of x ?
A. 16.5
B. 9
C. 6
D. 2.5
15) Given $\triangle D E F \sim \Delta G H I$ and

- $m \angle D=50^{\circ}$
- $m \angle E=(2+5 y)^{\circ}$
- $m \angle G=(102-x)^{\circ}$
- $m \angle H=(x+15)^{\circ}$

Find the values of $x, y, m \angle I$.
A. $x=13, y=52$, and $m \angle I=63^{\circ}$
B. $x=52, y=13$, and $m \angle I=63^{\circ}$
C. $x=13, y=52$, and $m \angle I=67^{\circ}$
D. $x=52, y=13$, and $m \angle I=67^{\circ}$
16) Given $\overline{A D} \cong \overline{C D}$, which statement is sufficient to prove that $\triangle A B D \cong \triangle C B D$?

A. $\angle A B D \cong \angle C B D$
B. $\overline{A D} \cong \overline{B D}$
C. $\angle B A D \cong \angle C D B$
D. $\angle A D B \cong \angle C D B$

Congruence and Similarity

17) Consider the two rectangles shown.

Using the statements in the table, complete the sentences below to determine whether the rectangles are similar.

Rectangle $A B C D$ \qquad similar to rectangle $P Q R S$ because so rectangle $A B C D$ \qquad dilated to fit exactly over rectangle $P Q R S$.

is	all rectangles are similar	can be
is not	all quadrilaterals are similar	cannot be
	their corresponding sides are congruent	
	their corresponding sides are not congruent	
	their corresponding sides are proportional	
	their corresponding sides are not proportional	

18) Base on the information given below, which of the following congruence theorems can be used to prove that $\Delta L M N \cong J K N$? Select All that apply.

A. Side-Side-Side
B. Side-Angle-Side
C. Angle-Side-Angle
D. Angle-Angle-Angle
E. Hypotenuse-Leg

Congruence and Similarity

19) In the diagram below of $\triangle A B C, D$ and E are the midpoints of $\overline{A B}$ and $\overline{A C}$, respectively, and $\overline{D E}$ is drawn.

Which methods could be used to prove $\triangle A B C \sim \triangle A D E$?

I. AA similarity
II. SSS similarity
III. SAS similarity
A. I only
B. I and II
C. II and III
D. II, II, and III
20) In the figure, $\angle Q P T$ and $\angle S T P$ are right angles.

Sides $\overline{P Q}$ and $\overline{T S}$ are congruent. Which statement is always true?
A. $\overline{R S} \cong \overline{P Q}$
B. $\overline{R S} \cong \overline{R Q}$
C. $\overline{R S} \cong \overline{S T}$
D. $\overline{P S} \cong \overline{P T}$
21) The elementary school in your town wants to replace its current playground. The space used for the new playground will be similar to that of the current playground. The current space is rectangular and has a length of 18 feet and a width of 15 feet. The length of the new playground is 30 feet. Find the perimeter of the space used for the new playground.
A. 25 feet
B. 66 feet
C. 90 feet

Congruence and Similarity

D. 110 feet
22) Quadrilateral $A C D G$ is similar to quadrilateral QYWT. Find the value of x.

Note: Figures not drawn to scale.
A. $x=10$
B. $x=15$
C. $x=20$
D. $x=25$
23) The following statements describe triangles $A B C$ and $P Q R$.

For $\triangle A B C: A C=2, A B=4$, and $B C=5$.
For $\triangle P Q R: Q R=7.5, P R=3$, and $P Q=6$.
Which statement explains why $\triangle A B C$ and $\triangle P Q R$ are similar or not similar?
A. $\quad \triangle A B C$ and $\triangle P Q R$ are not similar because $\frac{A C}{Q R} \neq \frac{A B}{P R}$.
B. $\triangle A B C$ and $\triangle P Q R$ are similar because $\frac{A C}{P R}=\frac{P Q}{A B}=\frac{B C}{Q R}$.
C. $\triangle A B C$ and $\triangle P Q R$ are similar because $\frac{A B}{P Q}=\frac{B C}{Q R}$.
D. $\triangle A B C$ and $\triangle P Q R$ are similar because $\frac{A C}{P R}=\frac{B C}{Q R}=\frac{A B}{P Q}$.
24) A park has a sandbox in a shape of a quadrilateral. Christian wants to create a smaller sandbox at his backyard having the same angles as the park sandbox.

Drawings of both sandboxes are shown.

Park Sandbox

$8 f t$.
Christian's Sandbox

What is the perimeter, in feet (ft), of Christian's sandbox? \square

Congruence and Similarity

25) A partial proof is given, using isosceles triangle $A B C$, where angle B is the vertex angle.

Given: Isosceles $\triangle A B C$
$\overline{B D}$ bisects $\angle A B C$
Prove: $\triangle A B D \cong \triangle C B D$

	Statements	Reasons
1.	Isosceles $\triangle A B C$	Given
2.	$\overline{A B} \cong \overline{B C}$	Definition of an isosceles triangle
3.	$\overline{B D}$ bisects $\angle A B C$	Given
4.	$\angle A B D \cong \angle C B D$	Definition of an angle bisector
5.	?	?
6.	$\triangle A B D \cong \triangle C B D$	Side-Angle-Side (SAS)

Which statement and reason complete the proof?
A. $\overline{B D} \cong \overline{B D}$, Reflexive Property.
B. $\overline{A D} \cong \overline{D C}$, Definition of midpoint.
C. $\angle A D B \cong \angle C D B$, All right angles are congruent.
D. $\angle A \cong \angle C$, Base angles of an isosceles triangle are congruent.
26) Segments $A C$ and $B D$ are diagonals of parallelogram $A B C D$.

Using $\overline{A D} \cong \overline{B C}$, which pairs of angles must be congruent to prove $\triangle A E D \cong \triangle C E B$ by the Angle-Side-Angle theorem? Select All that apply.
A. $\angle B C A \cong \angle B D A$
B. $\angle B E C \cong \angle A E D$
C. $\angle C A D \cong \angle B C A$
D. $\angle D A C \cong \angle D B C$
E. $\angle D B C \cong \angle B D A$

Congruence and Similarity

27) A partial proof is given. Two statements are missing.

Given: $\frac{A B}{A D}=\frac{A E}{A C}$
Points A, B, and C are collinear.
Points A, E, and D are collinear.
Prove: $\angle 1 \cong \angle 4$

Statement 1: $\frac{A B}{A D}=\frac{A E}{A C}$; Points A, B, and C are collinear; Points A, E, and D are collinear.
Statement 2:
Statement 3:
Statement 4: $\angle 1 \cong \angle 4$
Which relationships could be the two missing statements? Select All that apply.
A. $\angle 2 \cong \angle 3$
B. $\angle A \cong \angle A$
C. $\frac{A B}{B E}=\frac{C D}{A D}$
D. $\triangle A B E \sim \triangle A C D$
E. $\triangle E A B \sim \triangle C A D$
28) In quadrilateral $A B C D, \overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{A D}$, as shown.

Select a term from the table for each blank to complete the proof that $\triangle A B C \cong \triangle C D A$.
By the \qquad property of congruence, we can show that \qquad .

Therefore, it can be established that $\triangle A B C \cong \triangle C D A$ by the \qquad congruence theorem.

reflexive	$\overline{A B} \cong \overline{A D}$	A.S.A.
symmetric	$\overline{A C} \cong \overline{C A}$	S.A.S.
transitive	$\angle A B C \cong \angle C D A$	S.S.S.
	$\angle B A C \cong \angle A C D$	

Congruence and Similarity

29) A partial proof is given. For each blank, select a reason from the Reason Bank to complete the proof.

Given: $\angle J \cong \angle N, \overline{K P} \cong \overline{M O}$
$\overline{K P} \perp \overline{J N}, \overline{M O} \perp \overline{N J}$
Prove: $\overline{J K} \cong \overline{N M}$

	Statements	Reasons
1.	$\overline{K P} \perp \overline{J N}, \overline{M O} \perp \overline{N J}$	Given
2.	$\angle J P K \& \angle N O M$ are right angles	
3.	$\angle J P K \cong \angle N O M$	
4.	$\angle J \cong \angle N, \overline{K P} \cong \overline{M O}$	Given
5.	$\Delta J P K \cong \triangle N O M$	
6.	$\overline{J K} \cong \overline{N M}$	C.P.C.T.C.

Reasons Bank

A.A.S. Definition of midpoint
A.S.A. Definition of perpendicular lines
S.A.S. Vertical angles are congruent
S.S.S. All right angles are congruent Base angles of an isosceles triangle are congruent

Reflexive Property of congruence Transitive Property of congruence Symmetric Property of congruence
30) The Temple of Kukulkan is one of the tallest and most remarkable examples of the Mayan architecture. Fabio wants to build a smaller wooden version keeping the heights, lengths, and widths proportional and the angles congruent. A sample drawing of both structures is shown below.

Note: Figures not drawn to scale.
Find the length in meters (m) of x and y. Round your answer to the nearest tenth.

Congruence and Similarity

31) Your town wants to expand the community dog park with one similar in shape to the current dog park. The current dog park is rectangular and has a length of 75 feet and a width of 60 feet. The length of the new dog park is 100 feet. Find the area of the new dog park.
A. $4,500 \mathrm{ft}^{2}{ }^{2}$
B. $6,000 \mathrm{ft}^{2}{ }^{2}$
C. $8,000 \mathrm{ft}^{2}{ }^{2}$
D. $12,500 \mathrm{ft}$. ${ }^{2}$
