Transformations

1. The vertices of $\triangle P Q R$ are $P(5,3), Q(-7,2), R(0,-8)$. If $\triangle P Q R$ is transformed following the rule $(x, y) \rightarrow$ $(x-9, y+5)$, what are the coordinates of the vertices of $\Delta P^{\prime} Q^{\prime} R^{\prime}$?
A. $P(-4,3), Q(-16,2), R(-9,-8)$
B. $P(-4,8), Q(-16,7), R(-9,-3)$
C. $P(3,-4), Q(2,-16), R(-8,-9)$
D. $P(8,-4), Q(7,-16), R(-3,-9)$
2. Which transformation on the coordinate plane preserves only the angle measure?
A. Reflection across the line $y=-3 x$.
B. Rotation of 270° clockwise about the origin.
C. Dilation with scale factor of 1 not centered in the origin.
D. Dilation with scale factor of 1.5 centered in the origin.
3. Triangle $A B C$ and triangle $A D E$ are shown.

Select all of the transformations that could be performed to carry triangle $A B C$ onto triangle $A D E$.
A. a reflection across the line $y=-x$.
B. a reflection across the x-axis, and then a reflection across the y-axis
C. a rotation of 90 degrees clockwise about the origin, and then a reflection across the y-axis.
D. a rotation of 90 degrees clockwise about the origin, and then a reflection across the x-axis.
E. a rotation of 180 degrees clockwise about the origin and then a reflection across the line $y=-x$.
4. The figure below shows two perpendicular lines j and k intersecting at point D in the interior of a rectangle. Line j bisects both the top and bottom sides of the rectangle. Line k bisects both the left and right sides of the rectangle. Which transformation will always carry the figure onto itself? Select All that apply.

A. a reflection across line j.
B. a reflection across line k.
C. a rotation of 90° clockwise about point D.
D. a rotation of 180° clockwise about point D.
E. a rotation of 270° clockwise about point D.

Transformations

5. If triangle $A B C$ with coordinates $A(1,1), B(2,1), C(2,2)$ is reflected across the x-axis and then dilated by a factor of 3 about the origin, which set of coordinates represents $\Delta A^{\prime} B^{\prime} C^{\prime}$?
A. $A^{\prime}(1,-1), B^{\prime}(2,-1), C^{\prime}(2,-2)$
B. $A^{\prime}(-1,1), B^{\prime}(-2,1), C^{\prime}(-2,2)$
C. $A^{\prime}(-3,3), B^{\prime}(-6,3), C^{\prime}(-6,6)$
D. $A^{\prime}(3,-3), B^{\prime}(6,-3), C^{\prime}(6,-6)$
