## **Lines and Angles**

## Lines and Angles

1) In the diagram,  $m \parallel n$  and  $p \parallel q$ .



What are the values of x and y? A. x = 11 and y = 30 - correct B. x = 11 and y = 92C. x = 88 and y = 30D. x = 88 and y = 92

2) In the diagram below, line *m* intersects line *n*.



Select the choice that completes the proof that vertical angles  $\angle 1$  and  $\angle 3$  are congruent.

|    | Statements                                                                                     | Reasons                             |
|----|------------------------------------------------------------------------------------------------|-------------------------------------|
| 1. | Line $m$ intersects line $n$ .                                                                 | Given                               |
| 2. | $\angle 1$ and $\angle 2$ form a linear pair.<br>$\angle 2$ and $\angle 3$ form a linear pair. | Definition of a linear pair         |
| 3. | $m \angle 1 + m \angle 2 = 180^{\circ}$                                                        | Angles that form a linear pair have |
|    | $m \angle 2 + m \angle 3 = 180^{\circ}$                                                        | measures that sum to 180°           |
| 4. | ?                                                                                              | ?                                   |
| 5. | $m \angle 1 = m \angle 3$                                                                      | Subtraction Property of Equality    |
| 6. | $\angle 1 \cong \angle 3$                                                                      | Definition of congruent angles      |

- A.  $m \angle 1 + m \angle 3 = 180^\circ$ ; Definition of a linear pair
- B.  $m \angle 1 + m \angle 3 = 180^{\circ}$ ; Angle addition postulate
- C.  $m \angle 1 + m \angle 2 = m \angle 2 + m \angle 3$ ; Substitution correct
- D.  $m \angle 1 + m \angle 2 = m \angle 2 + m \angle 3$ ; Symmetric Property of Equality
- 3) In the diagram below,  $\overline{CD}$  is the perpendicular bisector of  $\overline{AB}$ . Based on this information which other statements can be proven to be true? Select All that apply.



- A.  $\overline{AC} \cong \overline{AD}$
- B.  $\overline{AC} \cong \overline{CB}$  correct
- C.  $\overline{AD} \cong \overline{DB}$  correct
- D.  $\overline{CB} \cong \overline{CD}$
- $\mathsf{E}.\quad \overline{CB}\cong \overline{AB}$

## **Lines and Angles**

4) Tina is constructing an angle congruent to  $\angle ABC$ . What is her next step?



- A. Using *MN* as the radius, place the center of the compass on *P* and construct an intersecting arc. correct
- B. Using *MB* as the radius, place the center of the compass on *P* and construct an intersecting arc.
- C. Using *MN* as the radius, place the center of the compass on *Y* and construct an intersecting arc.
- D. Using *MN* as the radius, place the center of the compass on *X* and construct the intersecting arc.
- 5) A student followed the given steps below to complete a construction.

Step 1: Place the compass on one endpoint of the line segment.

**Step 2**: Extend the compass from the chosen endpoint so that the width of the compass is more than half the distance between the two points.

Step 3: Without changing the compass width, draw an arc on each side of the line segment.

**Step 4**: Without changing the compass width, repeat the process from **Step 3** on the other endpoint of the line segment, making sure that the two new arcs intersect the first two arcs that were constructed.

Step 5: Plot a point on the intersection of the two arcs on each side of the line segment.

Step 6: Use a straightedge to draw a line between the two points.

Which type of construction is best represented by the steps given above?

- A. perpendicular bisector of a line segment
- B. angle congruent to a given angle correct
- C. parallel line through a point not on the given line
- D. bisector of an angle